Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.192
Filtrar
1.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613037

RESUMO

Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1ß (IL-1ß), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Camundongos , Humanos , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Células Endoteliais , Fibroblastos , Mitocôndrias , Colágeno
2.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606373

RESUMO

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Exossomos/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Miócitos Cardíacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , RNA Mensageiro/metabolismo , Apoptose , MicroRNAs/genética
3.
Reprod Domest Anim ; 59(4): e14554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566374

RESUMO

High sperm cryotolerance is crucial to the successful cryopreservation of boar sperm. Evaluating the cryotolerance of boar sperm by using a rapid and convenient technique can enhance the commercial viability of these sperm. This study investigated the correlation between sperm parameters for three sample subsets-fresh sperm, sperm with H2O2-induced oxidative damage (hereinafter referred to as H2O2-induced sperm), and frozen-thawed sperm-to identify the potential of these correlations to predict cryotolerance. A total of 64 sperm samples were obtained from 64 Duroc boars. The sperm parameters of the three subsets, where the frozen-thawed sperm were analysed at 30 or 180 min after thawing, were determined, and the coefficients of correlation between these parameters were calculated. The results indicated that H2O2-induced oxidative stress resulted in decreases in various sperm parameters-including total motility (TM), viability (VIA), mitochondrial membrane potential (MMP), and live sperm with MMP (LMP)-but increased their coefficients of variation. Receiver operating characteristic (ROC) curve analysis revealed that the kinematic parameters of the H2O2-induced sperm effectively predicted those of the frozen-thawed boar sperm at 30 min after thawing; the corresponding area under the ROC curve (AUC) was 0.8667 for TM and 0.8733 for progressive motility in the H2O2-induced sperm. For measurement at 180 min after thawing, the sperm membrane and mitochondrial parameters of the H2O2-induced sperm effectively predicted the LMP of the frozen-thawed boar sperm; the corresponding AUC was 0.8489 for VIA, 0.8289 for MMP, and 0.8444 for LMP. To our knowledge, this is the first study to directly establish a strong correlation between post-thaw boar sperm quality and H2O2-induced oxidative stress before freezing. Our proposed technique can serve as a valuable reference for the development of practical applications aimed at enhancing techniques for cryopreserving boar sperm.


Assuntos
Antioxidantes , Preservação do Sêmen , Suínos , Masculino , Animais , Antioxidantes/farmacologia , Sêmen , Peróxido de Hidrogênio/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/veterinária , Criopreservação/métodos , Motilidade dos Espermatozoides
4.
Physiol Plant ; 176(2): e14282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591354

RESUMO

In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.


Assuntos
Secas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Cloreto de Sódio/farmacologia , Plantas , Água , Estresse Salino , Estresse Fisiológico
5.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568774

RESUMO

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Assuntos
Metionina Sulfóxido Redutases , Oryza , Rhizoctonia , Oryza/microbiologia , Metionina , Peróxido de Hidrogênio/farmacologia , Racemetionina/farmacologia , Doenças das Plantas/microbiologia
6.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
7.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639187

RESUMO

Knee osteoarthritis (KOA) is a chronic degenerative disease that affects the quality of life of middle­aged and elderly individuals, and is one of the major factors leading to disability. Rongjin Niantong Fang (RJNTF) can alleviate the clinical symptoms of patients with KOA, but the molecular mechanism underlying its beneficial effects on KOA remains unknown. Using pharmacological analysis and in vitro experiments, the active components of RJNTF were analyzed to explore their potential therapeutic targets and mechanisms in KOA. The potential targets and core signaling pathways by which RJNTF exerts its effects on KOA were obtained from databases such as Gene Expression Omnibus, Traditional Chinese Medicine Systems Pharmacology and Analysis Platform. Subsequently, chondrocyte apoptosis was modeled using hydrogen peroxide (H2O2). Cell Counting Kit­8 assay involving a poly [ADP­ribose] polymerase­1 (PARP1) inhibitor, DAPI staining, reverse transcription­quantitative PCR, Annexin V­FITC/PI staining and flow cytometry, western blotting and co­immunoprecipitation analysis were used to determine the therapeutic efficacy of RJNTF on KOA and to uncover the molecular mechanism. It was found that PARP1­knockdown lentivirus, incubation with PARP1 inhibitor PJ34, medium and high doses of RJNTF significantly reduced H2O2­induced chondrocyte apoptosis. Medium and high doses of RJNTF downregulated the expression of cleaved caspase­3, cleaved PARP1 and PAR total proteins, as well as nucleus proteins of apoptosis­inducing factor (AIF) and migration inhibitory factor (MIF), and upregulated the expression of caspase­3, PARP1 total protein, as well as the cytoplasmic expression of AIF and MIF, suggesting that RJNTF may inhibit chondrocyte apoptosis through the PARP1/AIF signaling pathway.


Assuntos
Condrócitos , Osteoartrite do Joelho , Idoso , Pessoa de Meia-Idade , Humanos , Condrócitos/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Caspase 3/metabolismo , Farmacologia em Rede , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Qualidade de Vida , Apoptose
8.
ACS Appl Mater Interfaces ; 16(15): 19571-19584, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564737

RESUMO

Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.


Assuntos
Anti-Infecciosos , Quitosana , Ácido Gálico/análogos & derivados , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Quitosana/química , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Cicatrização , Escherichia coli , Biofilmes
9.
Nat Commun ; 15(1): 2943, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580637

RESUMO

Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.


Assuntos
Brassica rapa , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Estresse Fisiológico , Brassica rapa/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico
10.
Sci Rep ; 14(1): 7971, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575637

RESUMO

This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas Metálicas , Animais , Peróxido de Hidrogênio/farmacologia , Prata/farmacologia , Pesqueiros , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Água/farmacologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Aeromonas hydrophila
11.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474603

RESUMO

Glutathione (GSH) has long been recognised for its antioxidant and detoxifying effects on the liver. The hepatoprotective effect of GSH involves the activation of antioxidative systems such as NRF2; however, details of the mechanisms remain limited. A comparative analysis of the biological events regulated by GSH under physiological and oxidative stress conditions has also not been reported. In this study, DNA microarray analysis was performed with four experiment arms including Control, GSH, hydrogen peroxide (HP), and GSH + HP treatment groups. The GSH-treated group exhibited a significant upregulation of genes clustered in cell proliferation, growth, and differentiation, particularly those related to MAPK, when compared with the Control group. Additionally, liver functions such as alcohol and cholesterol metabolic processes were significantly upregulated. On the other hand, in the HP-induced oxidative stress condition, GSH (GSH + HP group) demonstrated a significant activation of cell proliferation, cell cycle, and various signalling pathways (including TGFß, MAPK, PI3K/AKT, and HIF-1) in comparison to the HP group. Furthermore, several disease-related pathways, such as chemical carcinogenesis-reactive oxygen species and fibrosis, were significantly downregulated in the GSH + HP group compared to the HP group. Collectively, our study provides a comprehensive analysis of the effects of GSH under both physiological and oxidative stress conditions. Our study provides essential insights to direct the utilisation of GSH as a supplement in the management of conditions associated with oxidative stress.


Assuntos
Antioxidantes , Fosfatidilinositol 3-Quinases , Humanos , Antioxidantes/farmacologia , Células Hep G2 , Fosfatidilinositol 3-Quinases/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
12.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542989

RESUMO

Rice blast, caused by the filamentous fungus Pyricularia oryzae, has long been one of the major threats to almost all rice-growing areas worldwide. Metconazole, 5-(4-chlorobenzyl)-2, 2-dimethyl-1-(1H-1, 2, 4-triazol-1-ylmethyl) cyclopentanol, is a lipophilic, highly active triazole fungicide that has been applied in the control of various fungal pathogens of crops (cereals, barley, wheat), such as the Fusarium and Alternaria species. However, the antifungal activity of metconazole against P. oryzae is unknown. In this study, metconazole exhibited broad spectrum antifungal activities against seven P. oryzae strains collected from rice paddy fields and the wild type strain P131. Scanning electron microscopic analysis and fluorescein diacetate staining assays revealed that metconazole treatment damaged the cell wall integrity, cell membrane permeability and even cell viability of P. oryzae, resulting in deformed and shrunken hyphae. The supplementation of metconazole in vitro increased fungal sensitivity to different stresses, such as sodium dodecyl sulfate, congo red, sodium chloride, sorbitol and oxidative stress (H2O2). Metconazole could inhibit key virulence processes of P. oryzae, including conidial germination, germ tube elongation and appressorium formation. Furthermore, this chemical prevented P. oryzae from infecting barley epidermal cells by disturbing appressorium penetration and subsequent invasive hyphae development. Pathogenicity assays indicated a reduction of over 75% in the length of blast lesions in both barley and rice leaves when 10 µg/mL of metconazole was applied. This study provides evidence to understand the antifungal effects of metconazole against P. oryzae and demonstrates its potential in rice blast management.


Assuntos
Ascomicetos , Hordeum , Magnaporthe , Oryza , Antifúngicos/farmacologia , Oryza/microbiologia , Peróxido de Hidrogênio/farmacologia , Triazóis/farmacologia , Doenças das Plantas/microbiologia
13.
Cell Biol Int ; 48(5): 726-736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439187

RESUMO

Cellular senescence is an irreversible cell-cycle arrest in response to a variety of cellular stresses, which contribute to the pathogenesis of a variety of age-related degenerative diseases. However, effective antisenescence strategies are still lacking. Drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Thus, we thought to investigate the effects of dihydroartemisinin (DHA) on senescent cells and elucidated its mechanisms underlying aging. Stress-induced premature senescence (SIPS) model was built in NIH3T3 cells using H2O2 and evaluated by ß-galactosidase staining. Cells were exposed to DHA and subjected to cellular activity assays including viability, ferroptosis, and autophagy. The number of microtubule-associated protein light-chain 3 puncta was detected by immunofluorescence staining. The iron content was assessed by spectrophotometer and intracellular reactive oxygen species (ROS) was measured by fluorescent probe dichlorodihydrofluorescein diacetate. We found that DHA triggered senescent cell death via ferroptosis. DHA accelerated ferritin degradation via promoting autophagy, increasing the iron contents, promoting ROS accumulation, thus leading to ferroptotic cell death in SIPS cells. In addition, autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. Moreover, Atg5 silencing and autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. We also revealed that the expression of p-AMP-activated protein kinase (AMPK) and p-mammalian target of rapamycin (mTOR) in senescent cells was downregulated. These results suggested that DHA may be a promising drug candidate for clearing senescent cells by inducing autophagy-dependent ferroptosis via AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Artemisininas , Ferroptose , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células NIH 3T3 , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Senescência Celular , Ferro , Mamíferos/metabolismo
14.
Genes (Basel) ; 15(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540348

RESUMO

High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.


Assuntos
Peróxido de Hidrogênio , Zea mays , Zea mays/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Resposta ao Choque Térmico/genética
15.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541241

RESUMO

Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 µg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.


Assuntos
Adesinas Bacterianas , Anti-Infecciosos , Nanopartículas Metálicas , Polifenóis , Solanum lycopersicum , Humanos , Prata/farmacologia , Antioxidantes/farmacologia , Virulência , Nanopartículas Metálicas/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Biofilmes , Anti-Inflamatórios/farmacologia
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124098, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460232

RESUMO

L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.


Assuntos
Iodo , Glândula Tireoide , Lactoperoxidase/metabolismo , Lactoperoxidase/farmacologia , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacologia , Peróxido de Hidrogênio/farmacologia , Iodo/química , Modelos Teóricos
17.
Plant Physiol Biochem ; 208: 108454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452449

RESUMO

Phyto-pathogenic fungal species is a leading biotic stress factor to agri-food production and ecosystem of globe. Chemical (Systemic fungicides) and biological treatment (micro-organism) are globally accepted methods that are being used against biotic stress (disease) management. Plant Growth-Promoting Microbes are being used as an alternative to ease chemical dependency as their overdoses have generated injurious effects on plants and environment. Therefore, present study performs to evaluate the photochemical and physiological profiling of plants exposed to chemical and biological treatment in biotic stress (disease) environment. Two concentrations of each chemical treatment i.e. Topsin-M 70 (Dimethyl 4,4'-o-phenylene bis 3-thioallaphanate, MF1 = 3 g kg-1 and MF2 = 6 g kg-1 seeds) and biological treatment i.e. Trichoderma harzianum strain Th-6 (MT1 = 106 spores mL-1and MT2 = 107 spores mL-1) were used in this experiment. Macrophomina phaseolina (MP) were used as biotic stress factor causing root rot disease in soybean plants. Morpho-physiological assessments and light harvesting efficiency of photosystem II were conducted after 52 days of treatment. Maximum quantum yield (Fv/Fm), number and size of active reaction center (Fv/Fo), photochemical quenching (qP), efficiency of photosystem II (ΦPSII), electron transport rate (ETR), chlorophyll content index (CCI), relative water content (RWC) and stomatal conductance (SC) were increased in MT2 and MF1 treatments as compared to stress plants (MP). Biological (MT2) and chemical (MF1) treatment lessen the production of stress markers showing -48.0 to -54.3% decline in malondialdehyde (MDA) and -42.0 to -53.7% in hydrogen peroxide (H2O2) as compared to stress plant (MP). Biological treatment in both concentration (MF1 & MF2) while chemical treatment at low dose effectively mitigates biotic stress and eases the magnitude of disease. Increasing doses of chemical treatment persuaded deleterious effects on the physiology and light harvesting efficiency of stressed plant suggesting the role of biological treatment (T. harzianum) against biotic stress management in future of crop protection.


Assuntos
Ascomicetos , Fotossíntese , Soja , Complexo de Proteína do Fotossistema II/metabolismo , Ecossistema , Peróxido de Hidrogênio/farmacologia , Clorofila/fisiologia , Estresse Fisiológico , Ascomicetos/metabolismo , Folhas de Planta/metabolismo
18.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493478

RESUMO

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Cromatina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Resistência a Múltiplos Medicamentos , Neoplasias da Mama/genética
19.
Transl Vis Sci Technol ; 13(3): 24, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546981

RESUMO

Purpose: To investigate the potential effects and mechanism of nicotinamide riboside (NR) on the oxidative stress and fibrosis model of human trabecular meshwork (HTM) cell line cells. Methods: HTM cells were pretreated with NR, followed by the induction of oxidative injury and fibrosis by hydrogen peroxide (H2O2) and TGF-ß2, respectively. Cell viability was tested using Hoechst staining and MTT assays, cell proliferation was assessed by EdU assay, and cell apoptosis was detected by flow cytometry and western blotting. DCFH-DA and DHE probes were used to measure the level of reactive oxygen species (ROS), and MitoTracker staining was used to measure the mitochondrial membrane potential (MMP). Fibrotic responses, including cell migration and deposition of extracellular matrix (ECM) proteins, were detected via Transwell assays, qRT-PCR, and immunoblotting. Results: NR pretreatment improved the viability, proliferation, and MMP of H2O2-treated HTM cells. Compared to cells treated solely with H2O2, HTM cells treated with both NR and H2O2, exhibited a reduced rate of apoptosis and generation of ROS. Compared with H2O2 pretreatment, NR pretreatment upregulated expression of the JAK2/Stat3 pathway but inhibited mitogen-activated protein kinase (MAPK) pathway expression. Moreover, 10-ng/mL TGF-ß2 promoted cell proliferation and migration, which were inhibited by NR pretreatment. Both qRT-PCR and immunoblotting showed that NR inhibited the expression of fibronectin in a TGF-ß2-induced fibrosis model. Conclusions: NR has a protective effect on oxidative stress and fibrosis in HTM cells, which may be related to the JAK2/Stat3 pathway and MAPK pathway. Translational Relevance: Our research provides the ongoing data for potential therapy of NAD+ precursors in glaucoma.


Assuntos
Niacinamida/análogos & derivados , Compostos de Piridínio , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Fibrose
20.
PLoS One ; 19(3): e0301372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547143

RESUMO

The importance of mitochondria in tissue homeostasis, stress responses and human diseases, combined to their ability to transition between various structural and functional states, makes them excellent organelles for monitoring cell health. There is therefore a need for technologies to accurately analyze and quantify changes in mitochondrial organization in a variety of cells and cellular contexts. Here we present an innovative computerized method that enables accurate, multiscale, fast and cost-effective analysis of mitochondrial shape and network architecture from confocal fluorescence images by providing more than thirty features. In order to facilitate interpretation of the quantitative results, we introduced two innovations: the use of Kiviat-graphs (herein named MitoSpider plots) to present highly multidimensional data and visualization of the various mito-cellular configurations in the form of morphospace diagrams (called MitoSigils). We tested our fully automated image analysis tool on rich datasets gathered from live normal human skin cells cultured under basal conditions or exposed to specific stress including UVB irradiation and pesticide exposure. We demonstrated the ability of our proprietary software (named MitoTouch) to sensitively discriminate between control and stressed dermal fibroblasts, and between normal fibroblasts and other cell types (including cancer tissue-derived fibroblasts and primary keratinocytes), showing that our automated analysis captures subtle differences in morphology. Based on this novel algorithm, we report the identification of a protective natural ingredient that mitigates the deleterious impact of hydrogen peroxide (H2O2) on mitochondrial organization. Hence we conceived a novel wet-plus-dry pipeline combining cell cultures, quantitative imaging and semiotic analysis for exhaustive analysis of mitochondrial morphology in living adherent cells. Our tool has potential for broader applications in other research areas such as cell biology and medicine, high-throughput drug screening as well as predictive and environmental toxicology.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Software , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...